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Study Problem



Study Problem
Cauchy-type singular integral equation

▶ Consider the problem of solving the singular integral equation given by

1
π

d
dx

(
−
∫ 1

0

φξ(ξ)

ξ − x
dξ

)
= 1, 0 ⩽ x ⩽ 1, (1)

subject to the boundary conditions

φ(0) =
3π
8
, φ(1) = 0 and φx(0) = 0. (2a-c)

▶ We want to solve (1) subject to (2a-c) both analytically and numerically.
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Study Problem

We approached the solution of this problem in 4 ways:
▶ Analytical Solution
▶ Approximate Analytical Solution

Using Chebyshev polynomials
▶ Finite Difference Method

Using central difference approximation
▶ Integral Approximation Approach

Used the left-end point rule for the integral
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Analytical Solution



Analytical Solution
▶ Integrating our problem w.r.t x we obtain the following characteristic integral

equation

−
∫ 1

0

φξ(ξ)dξ
ξ − x

= πx + A. (3)

▶ Using the standard inversion formula from [1] we obtain the inverse of (3) as

φx(x) =
c√

x(1 − x)
− 1

π2
√

x(1 − x)
−
∫ 1

0

√
ξ(1 − ξ)

ξ − x
(πξ + A)dξ. (4)

▶ We solved the integral on the LHS of (3) using (4) to obtain

φ(x) = C sin−1(2x − 1)−
(

x
2
+

1
4
+

A
π

)√
x(1 − x) + B. (5)

▶ We then used the conditions in (2a-c) to solve for the constants. 4



Analytical Solution

▶ Solving for the constants we obtained

A = −π, B =
3π
16

and C = −3
8
. (6)

▶ The analytical solution is therefore

φ(x) = −3
8

sin−1(2x − 1)−
(

x
2
− 3

4

)√
x(1 − x) +

3π
16

. (7)
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Approximate Analytical Solution



Approximate Analytical Solution
▶ In this section solve equation (1) using Chebyshev’s polynomials.
▶ First we transform equation (1) by letting,

φ(x) = H(y) where y = 2x − 1. (8)
▶ This gives us

d
dy

(∫ 1

−1

Hs(s)
s − y

ds
)
=

π

4
, (9)

subject to H(−1) = 3π
8 , H(1) = 0 and Hy (−1) = 0.

▶ For mathematical convenience we let ϕ(s) = Hs(s) and thus

d
dy

(∫ 1

−1

ϕ(s)
s − y

ds
)
=

π

4
, (10)

6



Approximate Analytical Solution

▶ Let the unknown function ϕ in (10) be approximated by the polynomial function ϕn(x)

ϕn(x) = w(x)
n∑

i=0

βiTi(x), (11)

where βi , i = 0,1,2,3, ...,n are unknown coefficients, w(x) is the weight function

w(x) =
1√

1 − x2
, (12)

and the Chebyshev polynomial is Ti = cos[i cos−1(x)].
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Approximate Analytical Solution

This gives us
d
dy

( n∑
i=0

βiγi(y)
)
=

π

4
, (13)

where

γi(y) =
∫ 1

−1

w(s)Ti(s)
s − y

dy =

∫ 1

−1

Ti(s)√
1 − s2(s − y)

dy . (14)

Let xk be a zero of the Chebyshev polynomials of the 2nd kind

Ui−1(x) =
sin(i cos−1 (x))
sin(cos−1 (x))

(15)

then,

xk = cos
( kπ

i + 1

)
. (16)
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Approximate Analytical Solution

From [2] we know that ∫ 1

−1

Ti(s)√
1 − s2(s − y)

dy = πUi−1(y) (17)

Therefore we get
d
dy

( n∑
i=0

βiUi−1(y)
)
=

1
4
. (18)

Setting n = 5 we get,

d
dy

[
β1 + 2β2y + β3(4y2 − 1) + β4(8y3 − 4y + β5(16y4 − 12y2 + 1))

]
. (19)
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Approximate Analytical Solution

Equating the coefficients by their powers we found β2 = 1
8 and β3 = β4 = β5 = 0.

Thus for n = 5, we have

ϕ5(y) =
1√

1 − y2

[
β0 + β1y +

1
8
(2y2 − 1)

]
= Hy (y). (20)

Integrating (20) w.r.t y we obtain

H(y) = β0sin−1(y)− y(1 − y2)

8
− β1

√
1 − y2 + C. (21)
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Approximate Analytical Solution

Using the boundary conditions we obtain the rest of the constants, C = 3π
16 , β0 = −3

8
and β1 = −1

4 . Thus we have,

H(y) = −3
8

sin−1(y)− y(1 − y2)

8
+

1
4

√
1 − y2 +

3π
16

. (22)

Substituting back (8) and rearranging the result we obtain,

φ(x) = −3
8

sin−1(2x − 1)−
(x

2
− 3

4

)√
(x(1 − x) +

3π
16

. (23)

which is the same as the analytical solution.
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Approximate Analytical Solution

It should be noted that the approximate analytical solution is equal to the analytical
solution when the forcing function is linear.
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Finite Difference Method



Finite Difference Method

We partition the interval of integration[0,1] into n equally spaced subintervals [ξi , ξi+1] of
length h = 1

n , where 0 ≤ i ≤ n − 1.

Let P(x) be

P(x) = −
∫ 1

0

φξ(ξ)dξ
ξ − x

, (24)

then (1) becomes

dP
dx

= π. (25)
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Finite Difference Method
Using the central finite difference approximation on (25) we get,

dP
dξ

=
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

= π, 1 ≤ i ≤ n − 1 (26)

where Pi± 1
2

and ξi± 1
2

are respectively given by

Pi± 1
2

= −
∫ 1

0

φξ(ξ)dξ
ξ − ξi± 1

2

(27)

ξi± 1
2

=
i ± 1

2
n

(28)
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Finite Difference Method

Assuming that the slope is constant in each subinterval and approximating φξ(ξ) using
forward difference, we obtain

Pi± 1
2
=

n−1∑
j=0

(
φj+1 − φj

ξj+1 − ξj

)
−
∫ ξj+1

ξj

1
ξ − ξi± 1

2

dξ. (29)

Substituting (29) into (26), we obtain

n−1∑
j=0

φj+1 − φj
(ξi+ 1

2
− ξi− 1

2
)(ξj+1 − ξj)

−
∫ ξj+1

ξj

1
ξ − ξi+ 1

2

dξ−
n−1∑
j=0

φj+1 − φj

(ξi+ 1
2
− ξi− 1

2
)(ξj+1 − ξj)

−
∫ ξj+1

ξj

1
ξ − ξi− 1

2

dξ = π

(30)
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Finite Difference Method
Integrating the integral terms we get

−
∫ ξj+1

ξj

1
ξ − ξi± 1

2

dξ = ln
∣∣∣∣ξj+1 − ξi± 1

2

ξj − ξi± 1
2

∣∣∣∣. (31)

Substituting (31), (30) becomes

n−1∑
j=0

(φj+1 − φj)mi,j =
π

n2 , (32)

where ξi+1/2 − ξi−1/2 = ξj+1 − ξj = 1/n and

mi,j = ln
∣∣∣∣ (2j − 2i + 1)2

(2j − 2i + 3)(2j − 2i − 1)

∣∣∣∣. (33)
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Finite Difference Method

▶ Expanding the summation in (32) and evaluating the resulting equations at
i = 1,2, ...,n − 1 generates a system of n − 1 linear equations in n − 1 unknowns
since φ(x0) = φ0 is known and φn = 0 according to (2a) and (2b).

▶ Imposing the boundary condition φx(x) = 0, another unknown can be determined
to get n − 1 system in n − 2 unknowns.

▶ As a result, any n − 2 is therefore sufficient to determine the remaining unknowns.
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Finite Difference Method

(a) n = 5 (b) n = 50 (c) n = 100

Figure 1: Graph of φ(x) plotted against x for (a) n = 5, (b) n = 50 and (c) n = 100, using the
conventional finite difference approach.
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Integral Approximation Approach



Integral Approximation Approach

In this section we are solving the integral in (1) using a simple approximation method.
We divide the interval into equal subintervals and apply an integration rule into each
subinterval. Using the left-end point rule we have,∫ ξj+1

ξj

f (ξ, x) = hf (ξj , x). (34)

Now we implement this technique on our problem. The expression given in (24) can be
written as,

Pi± 1
2
=

∫ 1

0

φξ(ξ)dξ
ξ − ξi±, 1

2

=
n−1∑
j=0

∫ ξj+1

ξj

φξ(ξ)

ξ − ξi± 1
2

dξ (35)
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Integral Approximation Approach

With the left-end point rule, we have

n−1∑
j=0

∫ ξj+1

ξj

φξ(ξ)

ξ − ξi± 1
2

dξ =
n−1∑
j=0

h
φξ(ξ)

ξ − ξi± 1
2

=
n−1∑
j=0

φj+1 − φj

ξ − ξi± 1
2

, (36)

which implies that

Pi± 1
2
=

n−1∑
j=0

φj+1 − φj

ξ − ξi± 1
2

. (37)

Substituting (37) into (25) we get
n−1∑
j=0

φj+1 − φj

ξj − ξi+ 1
2

−
n−1∑
j=0

φj+1 − φj

ξj − ξi− 1
2

=
π

n
(38)
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Integral Approximation Approach

which can be expressed as,
n−1∑
j=1

(φj+1 − φj)fi,j =
π

2n2 , (39)

where

fi,j =
1

2j − 2i − 1
− 1

2j − 2i + 1
(40)

For any choice of n and assuming we know φ0 and φx(0), equation (39) will result in a
system of n − 1 equations and n − 2 unknowns. We will then have a over-determined
system and any combination of n − 1equations can be used to solve for the n − 2
unknowns.
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Integral Approximation Approach

(a) n = 5 (b) n = 50 (c) n = 100

Figure 2: Graph of φ(x) plotted against x for (a) n = 5, (b) n = 50 and (c) n = 100, using the
integral approximation approach.
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Conclusion



▶ The two numerical methods performed well in approximating the analytical solution,
we unfortunately could not compare the methods using the errors to see which one is
is better at approximating the analytical solution.

▶ There are other more robust numerical methods that could be used such as the linear
spline method to solve the given problem.
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